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I. INTRODUCTION 

This study of the infrared matrix isolation spectra of small molecules 

consists of two major sections. The first section is the infrared matrix 

isolation spectra of Ĥ S and D̂ S performed under the usual assumptions of 

matrix isolation. These are: the potential field and the anharmonicity of 

the vibrations for the matrix isolated molecule are identical to those in 

the gas phase; and differences in isotopic shifts between the gas phase and 

the matrix are negligible. In the second section the validity of the 

assumptions is examined. HON was chosen for this task because it is well 

characterized spectroscopically and its geometry is simple. 

Initially, a simple perturbation treatment for the calculation of 

vibrational frequencies is developed and examples are given to illustrate 

the method. This approximation allows one to write simple separate 

expressions for each vibrational frequency and is valid for molecules whose 

terminal atoms are light compared to the central atoms. It is shown that 

for Ĥ S and D̂ S the approximation is excellent and allows one to determine 

the factors which govern the relative vibrational frequency of l/̂ , the 

symmetric stretching frequency and the asymmetric stretching frequency. 

All of the fundamentals of Ĥ S and D̂ S were observed in argon and 

krypton matrices. The band centers, anharmonicities and force constants 

were calculated and reported. A large anomaly in the isotopic shift in 

the gas and matrix was observed. This violated one of the assumptions 

previously made. 

12 ll+ 13 il+ 12 15 
All of the fundamentals were observed for H C N,H C N,H C ÏÏ, 

D̂ Ĉ̂ N̂ and except the CN stretch, for the hydrogen 

isotopes. Again a large discrepancy in the isotopic shifts in the gas and 
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matrix was observed. This anomaly was the greatest for hydrogen to 

deuterium isotopic substitution and decreased as the mass difference 

between the isotopes became smaller. 

The assumption of the transferability of gas phase anharmonicities to 

the matrix frequencies was tested on the basis of a linear XYZ model. It 

•was shown that for HCN there are negligible differences in the gas phase 

and matrix anharmonicities. 

In order to determine the geometry of HCW in an argon matrix the ratio 

(r /r„ ) ̂  . J where r and r are the equilibrium bond lengths, was 
CW CH matrix' CN CH 

compared to the corresponding ratio in the gas phase. The numerical values 

for the matrix ratios calculated on the basis of a linear XYZ vibrational 

model were inconsistent and in poor agreement with the gas phase ratios. 

A theoretical model was constructed to examine the geometry change to be 

expected from matrix perturbations. This model consisted of an HCN 

molecule enclosed in a spherical cavity of argon atoms. The total 

potential was assumed to be equal to the sum of the Lennard-Jones potential 

for the hydrogen and nitrogen ends of the HCN molecule plus the harmonic 

oscillator potentials for the CN and CH bonds. The total potential was 

minimized for a particular cavity size with respect to the position of the 

hydrogen, carbon and nitrogen atoms. The minimum in the total potential 

was found at a cavity size of 3.8 angstroms. The calculation shows a 

negligible change in the geometry for HCN. Hence, the disparity in the 

(r /r ) was not due to geometry changes but rather due to an 
CN CH matrix 

incorrect vibrational model. 

Another vibrational model for HCN in an argon matrix was used to 

explain the anomalous isotopic shifts. This model was an extended linear 
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model, depicted as M-H-C-N-M, vhere M is a mass contribution from the 

matrix. On the basis of the extended model the isotopic anomalies are 

shown to arise from a combined effect of a change in force constant 

multiplied by the difference in isotopic masses. Hence, large differences 

in isotopic masses, for example, hydrogen to deuterium, magnify the 

effect while small differences produce a smaller effect. 

Expressions for the matrix shifts in terms of the extended model are 

derived. These expressions emphasize the interrelation of mass changes 

and intermolecular force constants on the matrix shift. 

The gas phase band center for %/ g of and relative intensities 

of and are reported in the appendices. 

These studies show that matrix isolation structure determination 

should not be considered reliable unless the isotopic discrepancy is within 

experimental uncertainty. Otherwise, the anomalies which arise because of 

the use of a free molecule model will be attributed to geometry changes. 
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II. DETERMIKATION OF FORCE CONSTANTS BY CRYOGENIC 
MATRIX ISOLATION INFRARED SPECTROSCOPY 

A. General Relationships for Vibrational Frequencies 

One of the important problems in the interpretation of infrared 

spectroscopy of polyatomic molecules is the determination of the potential 

energy. Usually, the potential energy, V, is expressed as a Taylor series. 

In internal coordinates then: 

V = Yo + Z( 3v/ 9 R.)o ARi 

+ 1/2(I( 9̂ /QB. (ii.A.l) 

where V is an arbitrary constant which can be neglected. By virtue of 
o 

the fact that at equilibrium V is a minimum all first derivatives in the 

expansion are zero. In the harmonic oscillator approximation cubic and 

higher order terms in the expansion are neglected, hence: 

V = l/2( T f.,AR. AR ) (II.A.2) 
' ij 1 j 

where 

fij = ( @4/ 3 3 Ej 

are the quadratic force constants. Eq. II.A.2 is known as the general 

quadratic valence force field. 

The vibrationsLl kinetic energy is 

T = 1/2(R G"̂ É) (II.A.3) 
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.t 
where R is the transpose of R, R is a column vector containing the time 

'̂ 1 
derivatives of the internal coordinates, and G is the inverse of the G 

matrix as defined in the Wilson FG formalism (ItO). In Wilson's formalism, 

the F matrix contains the quadratic force constants while the G matrix 

contains the mass and geometry relations associated with the vibrational 

modes; consequently, the F matrix is related to the potential energy and 

the G is related to the kinetic energy of the vibrations. 

To find the vibrational frequencies one solves the following 

eigenvalue problem: 

or the secular determinant: 

I GP - X.*! 1 = 0 (II.A.5) 

The eigenvalue X., is related to the vibrational frequency 6J,> in 

reciprocal centimeters, by the formula 

X =  ̂ (̂ 7rccĵ )/\ (II.A.6) 

where c = the speed of light and = Avogadro's number. The components 

of the eigenvectors give the amplitudes of the coordinates which 

contribute to X or CJ. • The normal coordinate of a vibration can be 

defined in terms of the eigenvectors by an equation of the form: 

R = Ig (II.A.7) 

Here ̂  is a column vector of the internal coordinates, ̂  is a column 

vector of the normal coordinates and L is a matrix containing the L in 
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rows. The inverse eigenvectors (L ̂ ) are used to transform from the 

internal coordinate space to the normal coordinate space; 

Q = (L~ )R {II.A.8) 

and are found by solving the eigenvalue equation 

FG(L"̂ )̂  = (II.A.9) 

Once the normal coordinates are found from Eq. II.A.8 then both V and 

T are in the form: 

311-6 2 
V = l/2( 2 \Q.) (II.A.10) 

i=l  ̂̂  

3N-6 2 
T = l/2( Z Q_ ) (II.A.11) 

i=l i 

which expresses the fact that in normal coordinate space the vibrational 

motion consists of 3̂ -6 independent oscillations. 

From Eq. II.A.9 it is seen that F and G must be known before one can 

find ̂  for a molecule. G is generally known if the molecular geometry is 

known; however, F must be determined from the observed spectra using 

Eq. II.A.5. Unfortunately, for a problem of n frequencies the character­

istic polynomial of the secular determinant is of degree n, while there 

are n(n+l)/2 independent, unknown force constants in the F matrix. Thus, 

n(n-l)/2 additional data must be found to determine all the force 

constants. 

The force constants can be written explicitly as a function of the 

vibrational frequencies and eigenvectors, ŷ rewriting Eq. II.A.9 in 

the form 
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FGCl" ) =A (if ) (II.A.12) 

T where A = a diagonal matrix of the n eigenvalues, X , and (L ) = a 

matrix of the (L ) . Substitution of (L )(L ) = I into Eq. II.A.12 

gives 

«s» ^ 

F(L"̂ )(L" )̂ G(L"̂ ) = A(L"̂ ) (II.A.13) 

% multiplying Eq. II.A.13 by (L ) and requiring the following normal­

ization condition, 

(L ̂ )̂ G(L"̂ ) = I (II.A.IU) 

one obtains 

(L'^)^F(L"^) = A (II.A.15) 

or 

F = (l"̂ )A(I'"̂ )̂  (II.A.16) 

For a particular X » Eq. II.A.15 upon expansion gives 
n 

X =2 2 F L L (lI.A.15a) 
n 1 j ij in jn 

The n(n+l)/2 force constants can be determined from Eq. II.A.16. Hence a 

knowledge of all the (L and X yields the necessary equations to 

determine the force constants. These equations for n=2 are illustrated 

below 

F = (L~̂ fA, + (L"̂ )̂  ̂ (II.A.17) 
11 11 1 12 2 
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F = (l~^)^A + (II.A.18) 
22 21 1 22 2 

F ^ = (l~^)(l"^)A + (L"^)CL"^)A (II.A.19) 
12 11 21 1 22 12 2 

The somber revelation of Eqs. II.A.17 to II.A.19 is that the unknown 

F are functions of the L which are also unknown. It is instructive to 

_ -1 
investigate the changes in A, F, G and (L ) or (L) on the secular 

determinant in terms of cofactors rather than the L vectors. This is 

particularly desirable for small molecules where the cofactors are simple. 

Dennison (ll)shows that the k̂  ̂eigenvalue,can be written as 

A = (I F A A )/(£G'\ A ) (II.A.20) 
k j.g rs rk sk rs rk sk 

th th 
where A = the t cofactor found by striking out the t row and is 

th ,h 
proportional to L , the r component of the k eigenvector; F , and 

rk -w, rs 
—1 . —1. 

G are the matrix elements of the F and (G ) matrices. 
rs 

The eigenvalues A depend explicitly on the potential constants and 
k 

implicitly through A , A which themselves are functions of F . Hence, 
rk sk rs 

changes in \ produced by changes in F are found by differentiation, 
k rs 

thus yielding: 

s X V = <2 A A < )/( z G'X A ) (II-A.21) 
j.g rk sk rs rs rk sk 

Consequently, first order changes in the potential constants produce first 

order changes in Similarly, the changes in ̂  ̂ caused by isotopic 

substitution or geometry changes is 

s X . = A Ad g:^/(2 G-\ A ) (II.A.22) 
rs rs 
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In consideration of the above equations for the following 

remarks can be made; first order changes in the potential constants will 

produce first order changes in the frequencies ; first order changes in the 

potential constants will produce changes in the or as well as in 

the frequencies; first order changes in the or the without a change 

of potential have no influence on frequencies, at least to first order. 

This is known as Rayleigh's Principle which can be stated by 3 X^/91,^.= 0. 

B. Calculation of Vibrational Frequencies using Perturbation Theory 

Perturbation theory has been applied to vibrational problems in the 

past (27,13,5,6). The following is the approach given by Wilson (bO,p.239): 

If H. = (FG), , then the expanded secular determinant is 
ij i j 

«11-^ 

H 

H 

21 

12 

HGJ - A 

H 
In 

H 
ni 

H - A  
nn 

= 0 

th 
The first order approximation for the t eigenvalue is 

\ = "tt (II.B.1) 

In Appendix A it is shown that the second order approximation for the 

t^^ eigenvalue is 

il ...) 
t/t , tt' t't tt t't' 

(II.B.2) 

Applications of Eqs. I.B.I and I.B.2 are given in subsequent sections. 
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C. The Calculation of Force Constants from Isotopic Shifts 
of Vibrational Frequencies 

The method is based on the "imcoupled oscillator" approximation, 

(5,6,13,40) which has been treated formally and applied before; however, 

the full implications and utility of this approach have not been developed. 

The approximate analysis described here has a number of advantages: 

1. The force constants can be calculated without carrying out 

numerically a complete normal coordinate analysis. 

2. No a priori assumptions are made about the nature of the force 

field except that it is harmonic. In the examples presented later, 

however, a general valence force field is employed. (See Eq. II.A.2) 

3. The error in the calculated force constant caused by neglecting 

anharmonicity can be predicted by inspection. 

U. The force constants calculated from the approximate equations 

compare favorably with those determined from detailed normal coordinate 

analysis. 

A suitable set of coordinates to express the potential and kinetic 

energy are symmetry coordinates. In these coordinates, the matrix H = FG 

will be in block form greatly facilitating the expansion of the secular 

determinant. 

Using Eq. II.B.2 for isotopic pairs of the same symmetry, the 

difference in the eigenvalues can be written: 

- ji - "jj' -
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which often can "be satisfactorily approximated by the first order terms. 

Thus for a 2 X 2 block one obtains the pair of solutions: 

- °l2' 

2̂ - - V ' - =12' 

and similarly for a 3 x 3 block: 

 ̂ ' 'l2'%l - °2l' " - '31' 

2̂ - A' = + ̂ 21'<=12 - - «32' 

A3 - A; = ̂ 3'°33 - °;3' ' V'°13 - ' ̂32'°23 " =23' 

Now the significant simplification is this: For isotopic species of 

the same symmetry, these differences in the G matrix elements often are 

much simpler than the matrix elements themselves. This fact gives rise to 

some rather useful expressions relating the force constants to the 

differences in isotopic eigenvalues. 

Several examples are now given to illustrate the simplicity and 

accuracy of the above equations. 

1. XY molecules 

To take advantage of the symmetry of a bent, symmetric, triatomic 

molecule, it is convenient to transform to symmetry coordinates: 

S = (l/2)̂ '̂ (̂Ar + Ar ) (II.C.7) 
1 12 

S = Aa (u.c.8) 
2 
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1/2 
S = (1/2) ( A r  -  A r  ) (U.C.9) 
3 12 

 ̂ ""V •"S» 
The matrix elements for F, G, and H = FG are 3x3 matrices whose elements 

are given in Appendix B. 

The roots of the expanded secular determinant are then, 

;k° = H = F G = (f - f )[n (1 - cosa) +11 ] (u.c.10) 
33 33 33 r rr r'x ' y 

and the two solutions of the quadratic equation in A° 

+ «22) + («1̂ 22 - = 0 (Il.c.ll) 

One can express the sum and product of the two roots of this equation 

by well-known theorems (40,p.2l4): 

\° + x° = n + H „ (u.c.12) 
/̂ l ^̂ 2 11 22 

X° X° = H H - H H (U.C.13) 
'1^2 11 22 12 21 

but for our purposes it is preferable to obtain solutions by means of the 

quadratic formula: 

A = 

+ 1/2((H + H )̂  - ll(H H - H H )] (lI.C.lU) 
11 22 11 22 12 21 

where the root refers to the symmetric stretch ̂  °, and the root 

refers to the bending mode, ̂  This equation can be rearranged in the 

form: 
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A 
1 = 1/2(H + H ) 

A! 

Î - ta 

2 
and to the extent that the term Uh H /(H - H ) is negligible, and the 

12 21 11 22 

two roots can be written: 

\ °  =  H  = ( f + f  ) [ n  (1 + COSQ) + JUL ] - 2f LL SINQ (II.C.I6) 
''̂ 1 11 r rr r'x r<t 1 x 

X° = H = 2f- [JLL + LL (1 - COSa)] - 2f LL SINQ (U.C.17) 
'2 22 I y ' X roil X 

Of course, corrections to Eqs. II.C.I6 and U.C. 17 could be obtained by-

expanding the square root in an infinite series but for many cases these 

equations are quite satisfactory. 

Comparison of Eqs. II.C.16 and U.C.17 with U.C.12 and U.C.13 shows 

that the sum of the roots is unaffected by this approximation and that the 

product of the roots differs from the exact result by the term ̂ 2_2̂ 2l' 

The accuracy of Eqs. U.C.16 and U.C. 17, that is, the validity of the 

uncoupled oscillator approximation, depends on the size of the term: 

- "2/ 

compared to unity. 

The error produced in the eigenvalue, A ~ exact ~ "̂approx 

by neglecting this term is: 

- 1̂2̂  11 ' ̂22) (U.C.19) 
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Table II.C.l shows the size of this term for a number of molecules 

representing a variety of masses and geometries. 

It is evident from this table and also from a term by term analysis of 

the right-hand side of Eq. U.C.19 that the approximation will be good 

except when two conditions are simultaneously met : 

1. The mass of the central atom is small. 

2. The mass of the terminal atom is equal or greater than the mass of 

the central atom. 

The failure of the approximation is evident for 0 , OF and OCl . For H S 
3 2 2 2 

on the other hand the approximation is excellent. 

Although Eqs. U.C. 10, II.C.16, and U.C.IT are the same as those 

obtained from a perturbation treatment of the secular determinant, 

previous treatments at this point have proceeded to apply the approximate 

equations numerically. It is more instructive to analyze the equations 

further in general terms, however. For example, when data is available on 

terminally and symmetrically substituted isotopic species, YXY and Y'XY', 

Eqs. U.C.10, U.C.16, and U.C.17 can be written: 

(U.C.20) 

( \ l -  p . ; )  

XI-  A » '  = 2 f a  % - h l - p  

(U.C.21) 

(U.C.22) 

(U.C.23) 
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These simple isotopie relations yield accurate estimates of the valence 

force constants f , f and f- which do not depend upon any knowledge of 
r rr «• 

the molecular geometry. The accuracy of these estimates is demonstrated in 

Table U.C.2 for H 0 and SO and in Table U.C.3 for H Se and D Se. 
2 2 2 2 

The factors that govern the relative frequency of the asymmetric and 

symmetric vibrations of a molecule is a problem of chemical interest. 

Unfortunately, there is no convenient way to make such a comparison in a 

symmetric triatomic molecule when the eigenvalues are expressed in the forms 

given by Eqs. U.C.10, U.C.12, and U.C.13. On the other hand, Eqs. 

U.C.10 and U.C.lô yield a rather illuminating expression for this 

frequency difference: 

- A° = - 2f LL COS a - 2f (jLL + U ) + 2f M SIN CL (U.C.25) 
3 1 r"X rr r'x ' y rouT x 

For a linear molecule, this reduces to: 

A; -
and the difference in the frequencies is dominated by the term 2f M 

ri X 

unless jU.̂ < LI . Since f is typically 10 x f in absolute magnitude, 
' X ' y r rr 

and the condition for frequency coincidence isf/f sl+M/iX, two 
r rr ' y ' x 

conclusions can be drawn: 

1. Only linear hydrides would be expected to have nearly equal values 

of the symmetric and asymmetric modes, and 

2. if f is negative, coincidence can never occur. 
rr 

For very acute molecules, Q = 90°, the frequency difference is controlled 

by different factors: 
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x° - A® = 2f (LL + u ) + 2f a (u.c.27) 
3 1 rr ' X ' y ra ~x 

In this case, the frequency difference will tend to "be small because the 

constants f and f are usually small. This is in agreement with the 
rr ra 

empirical observation that near coincidence of the symmetric and asymmetric 

stretching modes is most common in molecules that have very acute apex 

angles, e.g., Ĥ S, Ĥ Se (l7)or SrF̂  (8). For intermediate angles, the 

term - 2f̂ ^̂ C0SCt becomes the dominant one in Eq. U.C.25, with the 

concomitant result that Ŵ , as is usually observed. 

Some interesting conclusions can be drawn by expansion of the second 

\  (2)  
order perturbation correction. Let \ ̂ be the second order term for the 

t' vibration, then in terms of F, G matrix elements 

A ( 2 )  2 
t' ~ ̂ 12̂ 11̂ 22̂  ̂ l̂Al ~ ̂ 22̂ 22̂  

* 4V22/'"ll°n - "22°22' 

If the symmetry coordinates are approximate normal coordinates, then 

\ (2) 
F and G are approximately diagonal. Therefore, % 0, since F̂  ̂% 0 

and G % 0, that is the vibrations are uncoupled. As F and/or G 
12 ' 12 12 

A (2) , the coupling of the vibrations increases. Searching for 

^ I (2) 
conditions which cause A to be small, relative to the first order 

energy, one can determine if the symmetry coordinates are approximate 

normal coordinates. 

Analysis of is obtained by writing Eq. U.C.28 as 
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= A + B + c (U.C.29) 

where 

 ̂ - ̂ 22°22' = 

® - '22=22' '"•<'•3^' 

<= = °%"22/'"ll°ll - V22' 

Two cases arise. First, since 0, A>0, C>0, and B< 0 for bent 

XŶ  molecules a partial cancellation of A or C by B can occur. The second 

case is F < 0 where no cancellation occurs. Table II.C.7 shows \ and 
1̂  t' 

the terms A, B, C for various molecules. Partial cancellation of A by B 

occurs for molecules where m \ m , whereas for molecules with m ̂  m , B 
X y X y 

partially cancels C. For OF̂  and SCl̂ , F̂  ̂0 and no partial cancellation 

occurs. In all instances where F 0̂ the B term always cancels the 
12 

largest term. 

The SÔ  ;'nolecule can be described accurately by an uncoupled 

oscillator. This is difficult to understand in view of the unfavorable 

mass difference. Table II.C.7 shows that for SÔ  the term A is very small, 

but while the terms B and C are much larger they almost cancel each other. 

The result is a very small coupling of the vibrational modes of SÔ  due to 

a fortuitous cancellation in B and C. 

Further insight into the coupling of the vibrational modes is obtained 

\ (2) 
by plotting A , A, B and C as functions of the bond angle. Since, for 

^ 1/2 
bent XY molecules, G = - (2) /J. SINQ/r, then as Ct approaches l80°, 

2  1 2  ' X  

A and B approach zero. Fig. II.C.l shows A, B and C as functions of the 
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bond angle from 90° to l80° for SO , where the terra A is approximately 

V (2 )  ^  
A f for reasons stated above. Similar plots are obtained for other 

molecules where the uncoupled oscillator approximation holds. 

\  ( 2 )  
Fig. II.C.2 is a plot of Â , , versus bond angle for OF̂  where the 

uncoupled oscillator approximation fails. The plot reflects the expected 

large coupling of the symmetric stretching and bending modes of OF̂ , and 

the unexpected sensitivity of the coupling on the bond angle. 

The sensitivity is shown by a complete reversal of the assignment of 

the vibrational modes by increasing the bond angle from 104° to 107°. 

Fig. II.C.3 shows the dependence of the terras A, B, C on bond angle. 

The discontinuity in OF̂  occurs because the denominator in Eg. II.C.28 

is approximately equal to the difference in the vibrational frequencies, 

which are nearly equal at the equilibrium bond angle. A small increase in 

the bond angle produces an equality of the vibrational frequencies, which 

( 2 )  
t' 

\  ( 2 )  
causes /\ , to go to infinity. 

2. XY molecules 
—3 
The utility of the approximation is also exemplified by a pyramidal 

molecule of C symmetry. In all, there are six modes—2A and 2E. The 
3v 1 

A modes are the symmetric stretch V and deformation %/ and the E modes 
11 2 

consist of two pairs of degenerate asymmetric stretches and bends 1̂ . 

Thus the secular determinant consists of two 2x2 blocks, each block 

involving a stretch and deformation. For the isotopic pairs XŶ  and XŶ , 

Eqs. II.C.2 and II.C.3 give; 

( - A;) = (f̂  + (II-C.33) 
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(  A,  -  A')  = (f, - - /J.;) (II-C.SM 

P ̂  iiCOSCL 
(>2 - A^) = (f« + 2faa "My - eagsr' <"-C-35) 

< \ - X;) = (f^ - w )% -

In these equations, Q, = the Y-X-Y bond angle, and jJL̂  = the reciprocal of 

the mass of atom Y. These simple expressions give surprisingly accurate 

values of the force constants compared to the more complicated expressions 

of the standard treatment (l8,p.l88). (See Table II.C.U) 

3. molecules 

Results of similar accuracy are obtained for tetrahedral molecules. 

The nine vibrations are of symmetry Â , E and 2F. Hence the symmetric 

stretch and doubly degenerate bend 1/̂  are identical to the exact 

treatment (l x 1 blocks), while the asymmetric stretch T/̂  and the 

asymmetric bend fall in a 2 x 2 block of the secular determinant. For 

terminally substituted pairs XŶ  and XYĵ , the resultant equations for the 

eigenvalue differences are: 

- M;' (U.C.37) 

(Xg - A') = - 2^41 + fia )(4y - F;) (II'G.38) 

( A3 - A') = - fJ-p (U.C.39) 

' - A;) = - fittt "Hy -

In these equations the constant f̂  ̂= the angle-angle interaction 

constant between the two coordinates having a common bond and f̂  ̂= the 
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interaction constant between nonadjacent angles. A comparison with the 

more detailed computation is shown in Table U.C.5. 

It. XY_Z molecules 
—2-2 

The tetrahedral XŶ Ẑ  molecules offer a more challenging example. The 

nine vibrations are of symmetry 4a , A , 2B , and 2B.. The A , B and B„ 
12 1 2 2 1 2 

vibrations of SiHjCl̂  and SiD 01̂  were chosen to test the calculation. 
2 2 2 2 

The description of the modes is as follows: 

H torsion 

Si-H stretch 
/ 6 

B 
1 

Si-H rock 
7 

Si-Cl rock 

B 
2 S 

9 

Eqs. II.0.2 and U.C.3 give: 

Si-Cl stretch 

( X j -  =  

( Ag - - /J-M 

( A ,  -  A ; )  = v(i/2>(My-

'^8- ̂ 8'= 

(lI.C.Ul) 

(u.c.42) 

(U.C.U3) 

(Il.c.kk) 



www.manaraa.com

21 

( - A^) = 0 (u.c.45) 

The results are compared in Table U.C.6. It is interesting that the 

detailed normal coordinate analysis (10) leads to two possible sets of 

potential constants for SiĤ Cl̂  and that these approximate equations 

converge to the correct set. The zero isotope shift predicted for 1/ 
9 

is verified by the small observed shift—590 cm for Ĥ SiCl̂  to 566 cm 

for D̂ SiCl . 
2 2 

The effect of neglecting anharmonicity in the force constant 

calculation can be estimated by assuming that the observed frequency 1/ 

and the harmonic frequency (jj are related by an equation of the form: 

V = cod - ̂ ) (II.C.U6) 

It follows that: 

A V = A (1 - df (U.C.it?) 
Obs harm 

Since the inequality CC y oC is always true if the primed isotopic species 

is assigned to the heavier isotope, the isotopic difference of the 

eigenvalues obeys the inequality: 

Thus the use of observed frequencies in Eqs. U.C.2 to U.C.6 produces 

lower bounds to the true force constants, provided no other vibrational 

interactions are important. 
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Table II.C.l, The value of (AA°lfor some typical triatomic molecules 

Molecule A° |̂ X°I 

HgOa 8.65208 1.60104 0.00725 

"/ k.36491 0.86901 0.00001 

HgSeb 3.50370 0.65938 0.00290 

o
 

ro
 o
 

0.80318 0.16317 0.00834 

clo/ 0.54613 0.12218 0.03469 

OFg* 0.50846 0.12521 0.06028 

°3' 0.72589 0.29282 0.31287 

ocig* 

A 

0.27887 0.06033 0.22657 

Ŝource: (29). 

Ŝource: (IT). 

Ŝource: (38). 

Ŝource ; (30). 
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Table U.C.2. Comparison of the force constants of Ĥ O and SOg calculated 
from Eqs. U.C.20 to U.C.24 with best̂ gas phase values. 
All constants are in Millidynes/A 

HgO* 

Observed frequencies Harmonic frequencies Best values 

r̂ 
7.603 8.167 8.451 ± .004 

r̂r 
-0.514 -0.090 -0.100 + .004 

0.680 0.750 0.759 ± .002 

^rcL 
0.861 0.210 0.327 + .025 

Observed frequencies 

SOg" 

Harmonic frequencies Best values c 

f 
r 

9.71 10.33 10.29 ± 0.20 

r̂r 0.03 0.08 0.04 + 0.20 

0.78 0.82 0.816 ± 0.007 

^rct O.IT 0.24 0.25 ± 0.21 

Ŝource: (29). 

Ŝource: (l). 

°Source: (36). 
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Table U.C.3. Harmonic valence force constants of 

HgSe and DgSe (m dyn/A)* 

Approximate Equations Exact Equations 

fy 3.511 3M8 

fŷ  -0.018 -0,021 

f . 0.328 0.3k2 
(L 

^Source; (17). 



www.manaraa.com

25 

Table Il.C.k Observed valence force constantŝ  
NĤ  and PĤ  (m dyn/A) 

NHg ™3 

Approximate 
equations 

Exact 
equations 

Approximate 
equations 

Exact 
equations 

f 
r 

6.278 6.541 3.008 3.096 

r̂r 
0.12 0.002 -0.006 -0.065 

0.519 0.553 0.330 0.360 

^(C(L 
-0.088 -0.068 -0.021 0.002 

Ŝource : (12). 
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Table U.C.5. Harmonie valence force constantŝ  of 
CHjj and (m dyn/A) 

Approximate Exact 
eq̂ uations equations 

4 

''a -  ̂

r̂ ~ ̂ rr 

~ oJ 

5.8U3 5.842 

0.486 0.486 

5.362 5.383 

0.469 0.458^ 

Ŝource: (12). 

T̂here is a typographical error in Table III of reference (12) where 
this constant is tabulated as negative. This is inconsistent with 
their Fig. 1. 
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Table U.C.6. F matrix elements for SiK̂ Cl̂  and SiD̂ Cl̂  

' V  ° 'SIH = 

Approximate 
equations 

Exact 
equations 

F, 

55 

66 
7 
77 

8̂8 

99 

-

A,) 

0.U3 

2.76 

0.74 

0.55 

indeterminant 

0 

m dynA/rad'̂  

m dyn/A 

m dynA/rad̂  

2 
m dynA/rad 

0 .U2  

2.Si 

0.73 

0.60 

2.89 

0.02 

Ŝource: (10). 
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Table U.C.7. The value of for some typical triatomic molecules 

A B C  

HgO -0.00026 0.03455 -0.04l4l 0.00660 

HgS 0.00002 0.00514 -0.00614 0.00101 

HgSe 0.00000 0.00000 0.00000 0.00000 

SO, 0.00511 0.00200 -0.01613 0.01924 

NOg 0.03799 0.01390 -0.08867 0.11280 

ClOg 0.00121 0.00252 -0.01480 0.01349 

°3 0.07718 0.02182 -0.13381 0.18920 

OFg 2.37610 0.06965 0.67480 1.63400 

OClg -O.OOI192 0.02737 -0.10150 0.06921 

SClg 0.0222k 0.00046 0.00632 0.01546 
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Fig. II.C.l. A plot of Eq.s. U.C.30 to U.C.32 against the 

bond angle for SOg 
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Fig. U.C.2. A plot of against the bond angle for OFg 
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Fig. U.C.3. A plot of A,B,C against bond angle for OF̂  
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D. Matrix Isolation Spectroscopy: Assumptions 

Infrared matrix isolation has been reviewed by several authors 

(U,22,32). The matrix isolation technique, involves the deposition of a 

dilute mixture of sample and rare gas onto a transparent window at liquid 

helium temperatures. Afterwards, the matrix is examined spectroscopically. 

In comparison with the gas phase vibrational spectra where fundamental 

absorptions are accompanied by large rotational envelopes, the matrix 

spectra show only a sharp band, that of the fundamental vibrational 

absorption. However, due to small solvent shifts, band centers from matrix 

spectra do not coincide with those from gas phase spectra. 

The great advantage of matrix isolation spectroscopy is the enhanced 

resolution. At liquid helium temperatures the absorptions bands are very 

narrow with half widths less than one cm ̂  being common. Consequently, 

with high resolution instrumentation, bands due to isotopic species can be 

resolved. 

Recently, Allavena, et al. (l) have investigated the matrix spectra 

of several isotopic species of 80̂  in Kr and Ar matrices under high 

resolution conditions. They concluded that the potential field and geometry 

of SÔ  was negligibly different from that obtained from gas phase 

measurements. The same conclusions were also drawn from other similar 

studies (8,2k). These studies make the following assumptions: 

1. The geometry of a gaseous species does not change upon isolation 

in a rare gas matrix. 

2. Small solvent shifts can be neglected. 

3. Differences in isotopic frequencies in the gas phase are identical 
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to differences in isotopic frequencies in rare gas matrices. 

4. Gas phase hand, intensities are the same as band intensities in 

rare gas matrices. 

Utilizing the above assumptions the matrix isolation spectrum of Ĥ S 

and D̂ S has been studied (3l) and is discussed in the next section. 

E. Matrix Isolation of H S and D S in Argon and Krypton Matrices: 
An Example of an Uncoupled Oscillator 

1. Introduction 

The molecules Ĥ S and D̂ S offer an excellent opportunity for 

demonstrating the application of matrix isolation spectroscopy, for despite 

the fact that the spectrum of Ĥ S and D̂ S has been the object of extensive 

study (2,3,15,19,25,26,39) for many years, its interpretation is still 

incomplete. Indeed, the asymmetric stretching fundamental has never 

been observed, even though this feature is commonly the most intense one 

in the vibration-rotation spectrum of triatomic molecules. The complexity 

of the spectrum arises from the near coincidence of the stretching 

frequencies, and Not only does the superposition of the 

rotational envelopes hinder the location of the origins, but the closeness 

of the frequencies also causes the overtone-combination levels (v.,v ,v ) 
1 2 3  

and (v̂ -2,V2,Vg+2) to interact strongly, thus complicating the overtone-

combination analysis (39). 

2. Experimental 

All spectra were measured with a Perkin-Elmer E-13 monochromator. 

The frequencies were calibrated with NĤ , Ĥ O or HBr (33) depending on the 
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region under study, and the reported frequencies are the mean of at least 

two separate scans. The values reported are believed to be precise within 

—1 
+ 0.15 cm . 

Refrigeration was obtained with an Andonian variable temperature 

cryostat. The deposition window was mounted in a compression holder 

milled from OFHC copper. Indium wire and foil (purity stated by 

manufacturer to be 99-999%) were used to insure thermal contact betweeen 

the window and holder and between the holder and the cryostat block. 

Under operating conditions the temperature of the block was about 8°K. 

The window temperature was undoubtedly slightly higher. 

The gas handling and vacuum systems were constructed of copper. The 

vacuum system consisted of a mechanical fore pump, oil diffusion pump, 

liquid nitrogen trap and appropriate bellows valves. The pressure was 

monitored at several points in the system with cold cathode sensors, and 

-6 
ambient pressure prior to liquid helium transfer was 10 torr. Samples 

were prepared using standard manometric techniques. The deposition rate 

was controlled with a Granville-Phillips standard leak and measured with a 

Wallace-Tiernan manometer. Deposition rates were typically 0.1 or 0.2 

millimoles of matrix per minute. Ĥ S and D̂ S were obtained commercially 

and used without further purification except that the samples were degassed 

at liquid nitrogen temperatures prior to dilution with the matrix gas. 

The krypton and argon were stated by the manufacturer to contain less than 

105 ppm and 15 ppm impurities respectively. 

Although no isotope exchange occurred in the vacuum system, some 

incompatibility between the vacuum system and the samples were encountered. 
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It was found that Ĥ S and D̂ S was absorbed by, or reacted with, the 

copper and viton components of the system during deposition. When various 

efforts to "cure" the system proved fruitless an empirical approach was 

adopted. Ĥ S and D̂ S were found to be stable in glass and stainless steel, 

so samples of sufficient concentration to produce sharp, polymer-free 

matrix spectra were prepared and stored in a glass bulb with a stainless 

steel valve. These samples (approximately one mole percent) were then 

deposited at a rate which experience with other molecules has shown to be 

adequate to insure isolation. This difficulty, of course, made it 

impossible to estimate the actual concentration of Ĥ S in the matrix. 

3. Results 

The matrix spectrum of Ĥ S in argon is shown in Fig. lI.E.l. This 

spectrum is qualitatively the same as that of D̂ S, and there is no 

substantial change in the features when krypton is used as a matrix. The 

spectrum of a 1:1 mixture of Ĥ S and D̂ S was a superposition of the spectra 

of the pure isotopic species and showed no features attributable to HDS or 

any of the multiplets characteristic of dimers composed of mixed isotopic 

species. Controlled diffusion experiments showed no marked reversible 

temperature dependence and all the features assigned to monomeric Ĥ S 

disappeared irreversibly at the same rate. Figure II.E.2 shows a 

controlled diffusion experiment for 3̂ DgS in krypton. The 

spectrum drawn with the light line is for the deposition at 12°K. The 

additional spectra were measured after diffusion at UO°K for ten minutes. 

All spectra were recorded at 12°K. The observed absorption frequencies 

of HgS and DgS are tabulated in Table lI.E.l. 
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h. Discussion 

The geometry of Ĥ S is well established (15), and the gas phase 

vibration-rotation spectrum has been examined extensively. Despite the 

presence of vibrational resonances in the overtone-combination bands, the 

vibrational levels seem to have been satisfactorily characterized, except 

for one disconcerting fact, the asymmetric stretch has never been observed 

for either Ĥ S (l8) or D̂ S (25). This is particularly surprising in view 

of the fact that this vibration is usually quite intense in the spectra of 

triatomic molecules. By subtraction of the combination frequencies: 

V(0,1,1) - (1,1,0) = CUg - + 2(X̂  ̂-X̂ i) + 3/2(X23 - X̂ )̂ 

(lI.E.l) 

one would anticipate that the asymmetric stretching mode should lie about 

—1 —1 
10.1 cm and 11.7 cm above the symmetric mode in Ĥ S and D̂ S 

respectively. Since these levels are unperturbed by the vibrational 

resonance, this estimate ought to be good, provided the anharmonic 

corrections (X - X ) and (X̂ _ - X ) cancel one another. Published 
33 11 23 12 

values of these constants indicate this cancellation is virtually exact, 

hence the band center of the 1/̂  vibration in the gas phase should be 

located at 2626.lU cm ̂  and 1909.13 cm ̂  for Ĥ S and D̂ S respectively. 

The matrix spectra qualitatively support these estimates of the 

location of the band center of the l/̂  vibration. As seen in Table lI.E.l, 

the position of the 1/̂  band is approximately 10 cm~̂  above the 1/̂  band in 

both matrices, although the agreement is not exact since these fundamental 

frequencies are shifted by different amounts in the matrix. On the basis 
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of the matrix data alone one might presume that but such an 

assignment is not consistent with the envelope shapes of the overtone-

combination bands in the gas phase and is excluded on that basis. 

The matrix spectrum has allowed a fairly unambiguous identification of 

fundajmental but it does not shed much light on the anomalous lack of 

intensity of this vibration in the gas phase. It has been general 

experience that the selection rules and relative intensity of vibrational 

transitions in the gas phase hold in the matrix, at least qualitatively. 

Since the and l/̂  modes are of comparable intensity in the matrix but 

the mode is apparently very weak in the gas, this experience appears to 

be violated in this case. At this point the weak intensity of the 

vibration in the gas phase spectrum remains unexplained. 

In this analysis, as in most vibrational treatments, it is presumed 

that the force field is harmonic. Thus, the force constants derived from 

Eqs. U.C.20 to U.C.24 using observed frequencies, will yield lower 

bounds to the harmonic frequencies. 

These equations are now applied to Ĥ S. Since the geometry of Ĥ S 

is known ( CL = 92°07'), the product rule for the vibration can be used 

to estimate the anharmonic corrections if one assumes that the corrections 

for isotopic species are related by: 

CC/CIj = (II.E. 2) 

Experimentally this relation seems especially valid for symmetric 

terminal isotopic pairs (l). In order to determine all six anharmonic 

corrections, an additional assumption is required. The gas phase data 

indicate that an appropriate one is anharmonic corrections 
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the harmonic frequencies, and eigenvalues based on this approximation are 

presented in Table II.E.2. The force constants f , f and f̂  are 
r rr l*-

computed from Eqs. U.C.22 to U.C.2k and f is calculated from an 
ret 

expression derived from Eqs. II.C.12, U.C.21 and U.C.22. 

f  =  -  [ ( À °  +  A ° )  -  ( A °  -  X ° ' ) ( a  +  u  ( 1  +  c o s a ) ) / ( u  -  u ' )  
r ( x  1 2  i i r - y ' x  ' y ~ y  

- (Ag - - COSa))/(/iy - jLLMlAfiSINQ (II.E.3) 

The force constants calculated from the matrix and gas phase data are 

compared in Table II.E.3. 

Table lI.E.U shows the observed matrix and gas phase isotopic shifts, 

where 2̂* ̂ 3 differences in the isotopic frequencies of 

and for hydrogen to deuterium substitution. The matrix isotopic 

shifts are different than the gas phase isotopic shifts. This is discon­

certing since infrared spectroscopists use isotopic shifts to determine 

molecular parameters in a variety of solvents assuming isotopic shifts are 

solvent independent. 

The remainder of this thesis offers an explanation for this effect 

through the use of a simpler system—hydrogen cyanide and several of its 

isotopic species. In addition other fundamental assumptions of matrix 

isolation will also be studied in the next sections. 
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Table II.E.l. The observed vibrational frequencies of HgS and D S in 
argon and krypton matrices 

Argon Krypton 
HgS DgS HgS DgS 

2̂ 2568.78 1862.10 2566.l4 I86O.U9 

1^2 1179.54 853.17 1176.90 850.57 

^̂ 3 2581.78 1870.33 2575.72 1866.50 
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Table II,E.2. Values of the anharmonic corrections, harmonic frequencies 
and eigenvalues of HgS and D̂ S 

Gas' Ar Kr 

«1 0.039k 0.0287 0.0297 

«2 0.0262 0.0332 0.0307 

«3 0.0387 0.0287 0.0297 

0.0283 0.0259 0.0213 

0.0188 0.0238 0.0220 

0.0278 0.0206 0.0213 

2721.92 2644.57 2644.60 

^2 121U.51 1220.06 1214.21 

3̂ 2733.36 2657.96 2654.48 

OJl  1952.08 1901.25 1901.02 

872.12 873.96 869.72 

U) 3 1963.88 1909.65 1907.16 

M U.36U91 4.12036 4.12045 

x° 0.86901 0.87694 0.86858 

O 00 k.40167 4.16218 4.15129 

2.24502 2.12962 2.12911 

A | '  O.UU81O 0.44999 0.44564 

A - 2.27224 2.14848 2.14288 

Ŝource : Cl7 ) • 
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Table II.E.3. Harmonic force constants of (millidynes/A) 

Ar Kr Gaŝ  

r̂ 
It. 01+0®"+ 0.003 I t .  035̂ 1 .003 I t .  286 

"rr 
-0.023 ± .003 -0.017 ± .003 -0.011 

O.ltSl + .002 0.427 ± .002 0.426 

fr» -0.062 + .004 -0.052 + 

0
 
0
 0.066 

®The uncertainties in the force constants represent only the result 
of error propagation. 

Ŝource; (l?)» 
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Table lI.E.U. Observed matrix and gas phase isotopic shifts 

Argon Krypton Gas 

HgS 2581.8 2575.7 2628.5* 

3̂ 3̂ 
711.5 709.2 717.1 

DgS 1870.3 1866.5 1909.1 

HgS 2568.8 2566.1 261k.4* 

706.7 705.6 718.2 

DgS 1862.1 1860.5 1896.U 

HgS 1179.5 1176.9 1182.7 

«̂ 2 326.3 326.3 327.2 

DgS 853.2 850.6 855.5 

Ŝource : (lU). 
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Fig. lI.E.l. The infrared spectrxim of Ĥ S in solid argon at 8°K 
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Fig" II.E.2. Diffusion experiment for DgS in krypton 
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III. MATRIX SPECTRA OF HCN IN ARGON; AN 
EXAMINATION OF THE ASSUMPTIONS OF 
THE MATRIX ISOLATION TECHNIQUE 

A. Experimental 

1. Technique 

HCN was prepared in a vacuum system by condensing Ĥ O onto an equimolar 

mixture of reagent grade KCN and P̂ Ô  at a liquid nitrogen temperatures. 

After the mixture was slowly warmed to room temperature, the HCN was 

distilled and repeatedly condensed on P̂ Ô  to remove traces of water. 

Several samples were analyzed by mass spectrometry and found to contain 

peaks attributable to HCN only; however, if the KCN, P̂ Ô , and Ĥ O mixture 

was not allowed to warm slowly a peak at mass = 52 appeared. This peak 

was attributed to (CN)̂ . No (CN)̂  was present in the samples used for 

matrix isolation. 

The experimentsil apparatus was identical to that used in the Ĥ S 

studies with the exception that an all glass vacuum system was used in 

place of a copper vacuum system. 

All sample concentrations were 1/700 or 1/350 mole ratio HCN/Ar. The 

deposition rate was O.OU millimoles/min. and the deposition temperature 

was approximately 20°K. All spectra were recorded at 10°K. 

The spectra were calibrated using gas phase HCN (34), DCN (9), and 

H 0 (16). 
2 

2. Spectra 

a. region Fig. III.A.i contains spectra of for H ̂ Ĉ N̂ 

and Ĥ Ĉ̂ %. The spectrum for the N̂  ̂isotope was recorded at a slower 
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chart speed to show the slight asymmetric character of the 1/̂  band. 

Fig-. III.A.2 shows spectra for 1/̂  of and The spectra 

for other isotopes are identical to those in the above figures. Spectral 

widths, band centers and frequency dispersions are noted on the figures. 

12 l4 
b. V region Fig. III.A.3 shows the spectra of 1̂  for DON 

13 lU 
and D C N. The spectra for the other isotopes in the region are 

similar to those shown in Fig. Ill.A.3. 

c. region Fig. III.A.4 shows four concentration experiments 

of the region of No other features were observed other than 

those shown in the figure. The large increase in intensity of the large 

band at 2110 cm~̂  with increasing concentration of HON strongly suggests 

that it arose from polymeric species. This band coincides with a very 

strong absorption of solid HON (20). The diffusion experiment in Fig. 

III.A.5 supports this view. Both the 2110 and 2095 cm absorptions 

-1 
increase in intensity while the 2115 cm absorption irreversibly decreases 

in intensity after diffusion. On the other hand, the band of DCN was 

12 15 
unambiguously observed. Fig. III.A.6 shows the spectra for of D C N. 

The spectra for the and isotopes are similar. The 

bands for the deuterium isotopes are not complicated by polymer bands in 

this region and the intensity of bands for DCN is approximately 20 

times stronger than of HCN (21). The isotopic shifts for DCN to HCN 

implies of HCN should absorb at 2095 cm ̂  which is buried in a polymer 

band. Since solid HCN exhibits intense polymer bands in this region, 

no assignment of was made for HCN. 
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3. Results 

Table III.A.l contains the calibrated, matrix frequencies, the 

average deviations and the number of calibrations measured for each band. 

Table III.A.2 contains the gas phase band centers and harmonic frequencies 

tabulated by Nakagawa and Morino (28). 

In Table III.A.3 the matrix shifts ( , are reported. 

The shift for is very small, is shifted to higher frequencies 

and is shifted to lower frequencies. 

A discrepancy between isotopic shifts in the matrix and the gas phase 

was previously noted for HgS and. D28. This same discrepancy is noted for 

HON in Table III.A.4. Define A? =  ̂? as the isotopic shift in 

the gas; then = A™-Â is the difference between the isotopic 

shifts for the gas and matrix frequencies. Table III.A.4 shows that A T 

is small for small isotopic mass changes to to while 

Ai is large for large isotopic mass changes (H to D). 

The significance of the matrix isotopic descrepancies is illustrated 

by an example. Several groups (8,24) have studied the high resolution 

matrix isolation infrared spectra of symmetric bent triatomic molecules. 

They have measured band centers within + 0.05 cm"̂  in order to accurately 

determine the bond angle which is calculated from the expression 

( 0)3/00̂ )2 = [jLL̂  + l̂yfl - COS <3 )]/[ĵ x + ̂ 1̂ (1 - COS OL)] 

(III.A.l) 

where OJ U)̂  are the isotopic harmonic asymmetric stretching fre­

quencies, and CL is the bond, angle. An assumption made because of the 



www.manaraa.com

54 

Table III.A.l. Calibrated matrix frequencies of HOW in argon 

A.D.& yb >̂ 2 A.D.& 
3̂ 

A.D.& ipb 

H12C14N 720.96 .05 10 3305.66 .07 4 

HISQIIIU 714.94 .03 8 3288.08 .13 6 

H12C15JJ 719.74 .04 4 3304.61 .10 4 

1925.17 0.03 4 576.02 .05 4 2626.43 .05 4 

D13C14U 1911.91 0.01 3 568.01 .06 4 2585.85 .03 6 

D12C15II 1900.16 0.01 3 574.44 .02 6 2616.99 .02 4 

Â.D. = average deviation. 

= number of trials. 
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Table III.A.2. HCW gas phase frequencies 

V2 3̂ 1̂ Wg W 

Hl2clltK 

h13Q1\ 

H12Q15N 

d12C1% 

pIBclltji 

D12C15N 

2096.85 

2063.05 

206lt.35 

1925.24 

1911.81 

1900.12 

712.35 

706.34 

711.41 

569.30 

561.60 

568.06 

3311.45 

3293.46 

3310.13 

2630.34 

2590.05 

2621.22 

2128.67 

2094.16 

2095.12 

1952.12 

1938.52 

1925.83 

727.10 

720.71 

726.01 

579.85 

571.82 

578.49 

3441.16 

3422.04 

3439.85 

2703.34 

2661.58 

2694.30 
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Table III.A.3. Observed matrix shifts 

^^3 

8.6l -5.8k 

8.60 -5.38 

H12C15K 8.33 -5.52 

pl2cll̂ jj -0.07 6.72 -3.91 

£)13C11|K 0.10 6.In -4.20 

d12015n 0.04 6.38 -It. 23 
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Table III.A.ij. Gas phase and matrix isotopic frequency shifts 

af Af Ag Af A;'̂  A» Af 

H12C1% 
6.02 6.00 0.02 17.53 17.99 -O.Uô 

HiScikm 

H12C1UN 
1.22 0.9% -0.28 1.00 1.32 -0.32 

Ĥ 2C15N 

])12C1UK 

13.26 13.43 -0.17 8.01 7.70 0.31 40.58 40.29 0.29 
D13C14N 

J312Q3% 

25.01 25.12 -0.11 1.58 1.24 0.24 9.44 9.12 0.32 
D1201ÎJU 

H12C14N 

D12ci4II 

D13C14U 

Dl3cl4if 

H12(J15JI 

D12C15N 

144.94 143.05 1.89 679.18 681.11 -1.93 

146.93 144.74 2.19 702.23 703.4l -1.18 

145.30 143.35 1.95 687.62 688.91 -1.29 

= %/m _ i / m \  

= %/s _ 
1 i i 

° A; = A m _ A e'. 
1 1 1  

Êstimated average deviation + 0.20. 

Êstimated average deviation + 0.20. 
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use of matrix data instead of gas phase data in Eq. III.A.l is that the 

frequencies shift nearly the same amount and thus have little effect on 

the frequency ratio. The in Table lI.E.U for HgS and DgS show that 

this assumption is poor for H to D isotopic substitution. Furthermore, 

since the "bond angle is sensitive function of vibrational frequencies 

then a poor value for the "bond angle will "be calculated regardless of 

the accuracy of hond center measurements, unless 0 or within 

experimental uncertainty. 

The isotopic discrepancies can arise from several effects which 

are discussed after the important matter of anharmonicities is investi­

gated in the following section. 

B. Determination of Anharmonicities 

1. Matrix anharmonicities 

Several attempts are made to determine anharmonicities in the matrix. 

The first is a general method while the second involves the Redlich-Teller 

Product Rule. Reasons are given why the methods fail to yield matrix 

anharmonicities. 

The general expressions relating the observed and harmonic funda­

mental vibrational frequencies for a particular isotope of HCÏÏ are 

^ 1 = ^ 1  +  + Xig/Z + X13/2 

^2 ̂ ^2* 3X22 + h2 + X23 + %LL (III.B.I) 

^̂ 3 = 003 + 2X33 + X13/2 + X23/2 
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where 1/̂  and are the observed and harmonic .frequencies, X.. and 

Xĵ j are the corrections for the anharmonicities of the i and j vibrations, 

and Xyj is the anharmonicity contribution which arises from the degeneracy 

of the fundamental. For each isotope of HCN one obtains a similar 

expression as illustrated below for three isotopic species of ': 
1 

i/l = + ZXii + Xig/Z + 213/2 

l /[=Cx)^ + 2X^ + X^„/2 + X' /2 (III.B.2) 

*  '  =  CO" + 2X" + X"/2 + X"/2 
1 1 11 12 13 

By use of Dennison's Rule, 

= COiCoj/WjWj «: UluyUiUi 

the X. . can be related to X' and X' '. In addition, if one assumes the Xtt 
ij ij 

are the same in the gas phase and in the matrix, the nine equations for the 

various Z/̂ 's can be solved in terms of nine unknowns—the three CO.*s and 

six X̂ j's. An attempt to use this procecure for 

failed for two reasons: first the Eqs. III.B.2 are nearly co-linear, and 

second, some of the C -Ĉ ,̂ isotopic shifts are so small that the 

approximations made are not valid. 

Thus another approach had to be tried to determine the anharmonicities. 

The total anharmonicity correction for denoted can be written: 

= COgd -  &g) (III.B.U) 
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Using the Redlich-Teller Product Rule, 

WyWg = IG'I /iGl (III.B.5) 

where I G I is the determinant of G; and the Dennison Rule: 

(III.B.6) 

ûfg can "be determined. This method also failed because the empirical 

Dennison Rule is not valid for HON. The reason for the failure can be seen 

by rewriting Cfg terms of the andCî : 

œ •/ of^ = (a)/a)')[3x'^ + + v^y 

[3X̂ 2 + X̂ 2 + X,3 + 

Using Dennison's Rule, 

Oi\l(t^ = ((j2/cj;)[3(ŵ /cug)%2 + (co{cô /aĵ cj2)x̂ 2 + 

The equality <Ẑ / (Zg = Wg/Wg requires that CL)̂ /Ŵ % Ŵ /Wg ~ 

a condition which is not met in this case. This is illustrated in Table 

III.B.3 where it appears that the condition is met for to and 

to isotopic pairs. However, the method also fails in these cases 

because the isotopic frequency shifts are so small that the error 

propagation makes the flĈ 's very inaccurate. 

Several studies have shown that anharmonicities can be transferred 

from the gas phase to the matrix (8,24). The various (X's are shown in 
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Table III.B.l and were calculated on this basis. The harmonic frequencies 

in the matrix using the gas phase CĈ  (28) are shown in Table III.B.2. 

2. The effect of changes in ahharmonicity 

Maki (23) studied the infrared spectrum of and concluded that 

the Enharmonic constant in the solid was the same as the enharmonic 

constant in the gas. It would be desirable to use a similar procedure for 

HON, assuming that the matrix harmonic frequencies were equal to those 

for the gas phase and using the observed matrix frequencies to find the 

various X 's. These could be compared to the gas phase X..'s to determine 
ij 

if "reasonable" changes account for the observed matrix shifts. 

In the application of this method for HCN and DCN other assumptions 

were necessary; first, Z/̂  for HCN in the matrix was set equal to in 

the gas phase, and second, X̂  ̂for both isotopes in the matrix 

were set equal to their gas phase values. This method worked poorly 

because of the uncertainty of several gas phase X̂  ̂(28). 

An alternate procedure was used to compare gas and matrix anharmonic-

ities. The Redlich-Teller Product Rule for and is 

î̂ /̂ 1̂ 3 " - ̂ 3)/ 

(1 - a|)(i - 0̂ 3)1/3̂  1̂ 3 (111.B.8) 

Rearranging the equation gives 

(1 - <Ẑ )/(1 - C2̂ ) =7r = Z/̂ Z/̂ (1 - CCp/l/̂ i/Hl - (Ẑ ) (III.B.9) 

Kq. III.B.9 is used to find the ratio of the anharmonicities in either 
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Table III.B.l. Gas phase anhamonicities®' 

H12C1IHI 

0.01̂ 948 0.01U856 0.014687 0.013770 0.013779 0.013350 

Qfg 0.020286 0.019939 0.020110 0.018194 0.0178273 0.018030 

QTg 0.037694 0.037574 0.037711 0.02700 0.026875 0.027121 

'̂Source: (28). 
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Table III.B.2. Harmonie matrix frequencies 

Wj 0)3 

Hl2ciltjf 735.89 3k35.09 

729.48 3kl6.33 

H12C15IÎ 73k.51 3k3k.ll 

1952.05 586.70 2699.32 

J)13C14jj 1938.62 578.35 2657.26 

D̂ ^C15N 1925.87 584.99 2689.95 
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6h 

H12C1̂ N 

D12C1Ujj 

jjl2cll̂ jj 

DIBCIUjj 

j)120lltjj 

D̂ Ĉ15N 

Table III.B.3. Ratio of isotopic gas phase frequencies 

wycug wycug 

0.98379 0.99121 0.99Ult0 

0.98^24 0.99850 0.99962 

0.91706 0.797̂ 8 0.78559 

0.99303 0.98615 O.98U55 

0.98617 0.99766 0.99666 
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Table III.B.4. Ratios for the gas phase and matrix anharmonicities 

#2Q15U 

jjl2clUjj D̂ Q̂Î .J 

[(1 - C C ^ ) / i l  - 0.9888 0.9890 0.9891 0.9998 0.9999 0.9999 1.0002 

[(1 - ^3)7(1 - ""à)]» 0.9890 0.9890 0.9891 0.9999 1.0000 0.9987 1.0001 

[(1 - Ûf2)/(1 - 0.9982 0.9990 0.9981 0.9996 1.0002 1.0001 i.ooou 

[(1 - o r ^ ) / U  - ap]g 0.9979 0.9979 0.9979 0.9997 0.9998 0.9997 0.9998 
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the matrix or gas phase. In Eq,. III.B.9 the assumption is made that the 

anharmonicity of the CN stretch is the same in the gas phase and 

matrix, the validity of this depends on the near coincidence of the gas 

and matrix frequencies. 

Similarly the product rule for the bending mode gives 

(1 -  cr^)/ ( i  - ap (uj.b.io) 

Table III.B.U shows the ratios for all possible isotopes. All of the 

ratios are in good agreement. Thus, to the extent that the ratios are 

sensitive measures of anharmonicity changes, the differences between gas 

phase and matrix anharmonicities are undetectable by our measurements. 

C. Force Constants: Linear XYZ Model 

To calculate the force constants in an argon matrix from the harmonic 

frequencies given in Table III.B.2, two assumptions are made: first, that 

no geometry changes occur in the matrix environment and second, that the 

linear XYZ model used to calculate the force constants in the gas phase is 

appropriate for calculating the force constants in the matrix. Under these 

assumptions the force constants were calculated using the gas phase 

geometries given in Table III.C.l and the following expressions: 

\ ̂ ̂  = 'ob'Mo ' Mn' - " Mc' tll.C.l) 
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Table III.C.l. Gas Phase Geometry of HON®" 

ĈH ĈN ĈN/̂ CH 

Hydrogen 1.067% 1.1557 1.0827 

Deuteri\an I.O658 1.1555 I.O8U16 

Ŝource: (7,38). 
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Table III.C.2. Matrix and gas stretching force constants for 
linear XYZ model 

Matrix®- Gas& 

ĈH 6.165 6.209 

ĈN. 18.869 18.712 

f -0.219 -0.228 
rr -0.219 

Âll force constants calculated from deuterium isotopes. 
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Table III.C.3. Matrix and gas bending force constants for linear XYZ model 

Matrix®' Gas 

jj12Q1UJJ 0.2669 0.2606 

0.2670 0.2607 

H12C15W 0.2667 0.2606 

HISQÎ JJ 0.2663 0.2601 

j)13clUjj 0.2660 0.2600 

])12cl5u 0.2659 0.2601 

Ĉalculated under the assumption gas phase geometry is transferable 
to the matrix. 
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Here Mh the reciprocal masses of the carbon, nitrogen 

and hydrogen atoms, r and r are the equilibrium bond lengths for the CH 
CH CN 

and CN bonds and f„„, f , f are the force constants for the CH and CN 
CH' CN rr 

bonds and the stretch-stretch interaction constant respectively. The force 

constants could only be completely determined for the deuterium isotopic 

frequencies since was not observed for the hydrogen isotopes. The 

bending force constant , however was calculated for each isotope . The 
& 

gas phase and matrix force constants are chown in Tables III.C.2 and 

III.C.3. Note the decrease in f and increase in f̂  and f. compared to 
CH CN  ̂

the gas phase values. These small discrepancies are outside the limits of 

experimental error. They can arise from two effects: changes in geometry 

and an inappropriate vibrational model. The following sections explore 

these possibilities and their influence on matrix shifts. 

D. Effect of the Matrix on Molecular Geometry 

In this section the ratio of the bond lengths r /r are found and 
CH CN 

compared to the gas phase. The ratios show that the geometry 

of HCN in a matrix environment cannot be found using a linear XYZ 

vibrational model. Also, a model for HCN in a spherical cavity of argon 

atoms is developed which predicts that the geometry of HCN in a matrix is 

essentially identical to that in the gas phase. 

When HCN is isolated in an argon matrix the following assumptions 
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pertinent to geometry changes caused "by the solvent are made: first, the 

molecule remains linear, consequently, any geometry changes are a result of 

changes in the CH or CN bond lengths; and second, the potential energy 

surfaces for all of the isotopes of HCN in argon are identical. 

The eigenvalue for the bending mode of HCN is given by Eq. III.C.3. 

For the two isotopes XYZ and X'YZ the differences in the eigenvalues of 

2̂- (fix -flx')/rxr 

can be rearranged to give an expression for r ̂ /r̂ y which is independent of 

f̂  . For the isotopic species and this ratio is 

W '̂CH " 

A comparison of the ratio calculated from argon matrix data to the 

ratio found in the gas phase can be interpreted as a measure of geometry 

change caused by the solvent. Since the CH bond is very strong and the CN 

stretching has a small solvent shift one expects r̂  ̂to be relatively 

unaffected by the solvent. On the other hand, the larger solvent shifts 

shown by the CH stretching frequency leads one to presume that changes in the 

bond length ratios in the matrix to be largely caused by changes in r̂ .̂ 

A number of ratios calculated from observed and harmonic matrix and gas 

frequencies are shown in Table III.D.l. The averages for ratios obtained 

from the harmonic frequencies shows a much longer r in the matrix than in 
Oil 

the gas. One finds the various (r̂ /̂r̂ )̂(Jg in the gas phase agree to within 

+ 0.005 to the ratio r /r = 1.080 found from microwave data as shown in 
CH CN 
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Table III.C.l. Such agreement is not found for the matrix ratios. The 

experimental uncertairties for the harmonic matrix ratio shown in the third 

column of Table III.D.l indicate that the disagreement in the ratios is 

outside the range of experimental error. Since the gas phase ratios agree, 

and the ratios in the matrix are not only much different but are discordant 

one must consider that the source of the discrepancy is either (A) a real 

change in the geometry or (B) due to the inapplicability of the linear XYZ 

vibrational model in the matrix. 

An independent estimate of geometry changes to be expected when HCN 

is placed in an argon matrix can be made. Presume that each HCN molecule 

is trapped in a spherical cavity of argon atoms which interacts with the 

hydrogen and nitrogen ends of the HCN molecule. These interactions are 

described by a Lennard-Jones intermolecular potential function averaged 

over the spherical cavity. The total potential then is the sum of the 

spherically averaged potentials plus the harmonic oscillator potentials 

for the CH and CN bonds. The equilibrium geometry of HCN for a particular 

cavity size can be found by minimization of the total potential with 

respect to the positions of the hydrogen, carbon and nitrogen atoms in the 

cavity. 

The model is developed in Appendix C. The results of this spherical 

cell model gives for the total potential energy of the system, 

X(a,b,c,R) = 2̂ nJl//(a,R.) + ̂ (c.R.c)] + (III.D.3) 

where n. is the number of argon atoms at the surface of a spherical shell 

of radius R and is calculated from the following equation: 
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n. = 12.0(R /I.91) 
2 

i i 

where the 12.0 refers to the number of nearest neighbors and I.91 is the 

spherically averaged Lennard-Jones interactions for the Ar-H and Ar-N ends 

potential functions for the CH and CN bondsj (See Eqs. VI.CIS and VI.C.lU) 

a, b, and c are the distances for the hydrogen, carbon and nitrogen atoms 

from the origin which is the center of the cavity. 

Minimization of ̂ (a,b,c,R) for a particular cavity size R allows a 

determination of the equilibrium positions of hydrogen, carbon and nitrogen 

atoms in the cavity, hence the equilibrium geometry of HCN as well as the 

position of the molecule in the cavity. 

The parameters used in the minimization process for the Lennard-Jones 

potential are given in Table III. TX2 where £ and O" correspond to the 

depth of the well and the internuclear distance of closest approach of two 

molecules or atoms as shown in Fig. III. D.I. The usual arithmetic and 

geometric mean is used to obtain the mixed Ç 's and CT's as illustrated in 

Table III.D.2. 

The inclusion of spherical shells of argon atoms, other than the first 

shell, had a negligible effect on the other minimum parameters, therefore, 

only the first shell was retained. Fig. III.D.2 is a plot of the lowest 

value of found for each cavity size. The function reaches its lowest 

value at R = 3.92 A. If the inter and intra-molecular equilibrium 

distances are added for Ar-H, Ar-N, CH and CN, a value of 4.17 A is 

obtained, whereas adding contact distance, (j- , (]- , r and r„ gives 
ArH Arn ON 

Van der Waal s radius of an argon atom;li/(a,E ) and f (c,R ) are the 
i  ̂ i 

of the HCN molecule. (See Eq. VI.C,9) harmonic 
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3.83 A. This leads to the conclusion that the H and N ends of the HCN 

molecule are close or at Van der Waals contact distances. 

Fig. III.D.3 is a plot of the positions of the H, C, and N atoms as a 

function of cavity size. The center of the cavity is taken as the origin 

with the H atom negative and the N atom positive. The plot consists of 

three very similar curves. The only difference is they are shifted by an 

amount which corresponds to the r̂  ̂and r̂  ̂equilibrium bond lengths. The 

plot reveals that the molecule adjusts itself essentially like a rigid 

body in the cavity in order to minimize the total potential. There is 

very little change in r̂  ̂or r̂  ̂bond lengths until the cavity radius is 

less than 3.8 A; then the repulsive potential compresses the molecule. At 

values of R more than 3.8 A the molecule moves over to the Ar-H side of 

the cavity because of the stronger Ar-H Lennard-Jones parameters. 

Fig. III.D.U shows a plot of the r̂  ̂and r̂  ̂equilibrium distances as 

a function of cavity size. Below R = 4.0 A the cavity decreases the bond 

lengths while above 4.0 A the cavity increases the bond lengths slightly. 

At the equilibrium cavity size R = 3.92 A, the r̂  ̂= I.065 A, r̂  ̂= 1.155 A 

where in the gas phase r = I.O67 A and r_ = 1.155 A. Thus, the effect 
CH LM 

of the matrix on the geometry of the HCN molecule is very small and 

undetectable by present matrix spectroscopic methods. 

The discrepancy observed in the bond length ratios of HCN in argon 

cannot be due to a real geometry change. Hence, other vibrational models 

for HCN in an argon matrix are explored in the next section. 
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Table III.D.l. Ratios of gas phase and matrix bond lengths 

Matrix Gas 

Hl20lltu _ ĥ Ĉ15N 

- D̂ ĉl̂ N 

- D̂ 20l5ii 

HISQÎ N - DlZcl̂ N 

HISQIIIJJ _ j)120lltjj 

0.961+9 ± 0.03 1.079 

0.9711 + 0.03 1.082 

1.092 + 0.02 1.081 

H12C11̂ N -

H12C1̂ N -

Dl2ckUjj _ DISQIUjj 

Average 0.9700 + O.OU 1.080 

0.8486 + 0.05 1.0T7 

0.8888 + 0.05 1.082 
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Table III.D.2. Lennard-Jones Parameters for the spherical model 

Ar N CH. Ar-H Ar-N 
2 4 

€ 116 79.8 lUU 129.2* 96.2* 

Cr 3.465 3.7U9 3.796 2.538% 2.907b 

^̂ Ar-H " ̂ Âr̂  

Âr-N ~ (̂ Ar̂  

""̂ Ar-H = (Ĝ lr 

O". = ( 0% +̂ „ )/2 - covalent radius of N in N„ 
Ar-N Ar C% 2 
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Fig. III.D.l. Shape and parameters for 
the Lennard-Jones potential 
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o 

o 

o 
o 

o 

.4 4.0 4.5 5.0 
R in ANGSTROMS 

III.D.2. The lowest value of the total matrix 
potential as a function of the cavity 
size 



www.manaraa.com

79 

Q =H 

O  = N  

3.5 4.0 4.5 
R in ANGSTROMS 

Fig. III.D.3. Positions of the H,C, and N atoms as 
a function of cavity size 
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4.0 4.5 
R in ANGSTROMS 

Fig. III.D.U. The and equilibrium bond lengths as a 

function of cavity size 
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E. A Vibrational Model for Molecules Trapped in Rare Gas Matrices 

In the previous sections it was shown that the linear XYZ vibrational 

model was an inadequate description of HCN in an argon matrix. In this 

section a model is presented which is a better representation of the 

vibrational spectrum of matrix isolated HCN. 

1. Diatomic model 

The model will first be presented for a diatomic molecule because of 

the simpler algebra involved. Fig. III.E.la shows the model for a 

heteronuclear diatomic molecule. The model presumes that the interaction 

of the cavity with the molecular system can "be described by an extended 

molecule with intermolecular force constants f̂  and f̂ . The mass 

contribution from the cavity, M, combines with the molecule to produce a 

system with linear symmetry. 

The quantitative aspects of the model are developed in Appendix D. 

The results for the stretching frequency given by Eq. VI D.3 for the 

diatomic molecule is: 

A; = + H yi + + My) + 

+ A + B + C + D  ( l I I . E . l )  

where f™ is the force constant for the stretching of the diatomic molecule 

in the matrix, and are the reciprocals of the masses of atoms X 

and Y, and A, B, C, and D are terms which describe the coupling of the 

molecule XY with the matrix. 
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The change in the force constant in the matrix from the value for a 

free diatomic molecule depends on two effects, the first is whether the 

diatomic system accepts or donates charge to the matrix (35,p.10). The 

in s 
second effect is the size of the cavity. In the former, f̂  f̂ ; when 

HI cr 
charge is taken from the cavity and f̂  ̂  f| when charge is donated to the 

cavity. 

The second effect is due to the size of the cavity which causes 

fg  ̂f® for a tight cavity, that is when the guest is large compared to 

m S  
the rare gas atom, and f̂  % f̂  for a loose cavity, that is when the guest 

is small compared to the rare gas atom. Separation of the two effects is 

difficult because both operate simultaneously. 

In view of the above considerations one expects a different force 

constant in the matrix and a positive contribution to X™ as the rare gas 

is changed from Ne to Xe because f̂  and f̂ , the intermolecular force 

constants, increase from Ne to Xe. 

Eq. III.E.l reflects the importance of mass considerations in 

determining the vibrational spectrum in the matrix. For example, if the 

diatomic system is HBr where X = H and Y = Br, then in Eq. III.E.l the 

2 
term  ̂̂ Ŷ  becomes very small. Thus the intermolecular 

interactions are determined by the hydrogen cavity interaction. 

2. Triatomic models 

Fig. III.E.lb shows the model for HCN in an argon matrix. The f̂  

and f, are intermolecular force constants, f™ , f™̂  , and f̂  are the HCN 

force constants in the matrix and M refers to a mass contribution from the 

argon cavity. A term by term analysis of the eigenvalues for the 
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stretching vibrations reveals that terms involving motions of the mass M 

are negligible so that the CH stretching vibration of HCW in an argon 

matrix is given by Eq. VI.D.ll: 

- (m.E.2) 

where is the CH stretching force constant and f̂  is the intermolecular 

interaction of the hydrogen atom with the cavity. The last term in 

Eq. VI.D.ll has been neglected because it is small compared to the other 

terms. 

Eq. VI.D.13 gives for the CH stretch in the gas phase: 

= to-E.3) 

Hence the change in the vibrational eigenvalue upon hydrogen to deuterium 

isotopic substitution is: 

- Md/'Md + (III.E.5) 

12 13 
and for the C to C isotopic substitution: 

A™ - AA® = foH<Mcl2 - M.13' - - M.13' 

and 
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•̂ CH " "̂ ÔH " " ''rr' M :12 " ̂ Cis' 

- + Mc12) - + F-O13>1 

The isotopic shifts in the matrix and gas can he compared "by defining 

A ; = (A® - A?) 
I l l  

where 

A % A" - X; m 
1 

and 

A® = X® - X'® 
1 1 i 

The quantity A| is a measure of the isotopic discrepancy between the gas 

and matrix. Therefore for H-D isotopic substitution 

A ^  M o )  -  K /  

(/J.p + /ip)l (III.E.8) 

12 13 
and for C -C isotopic substitution 

Â (c".c") = (f;, - - Mcls) - 'C -

+ + Mcia) - ^ Mc13>1 (iii-s-9) 

It is to be noted that even if the force field of the guest molecule in the 

matrix and gas is identical, the isotope shifts will still differ due to 

the last term in Eqs. III.E.8 and III.E.9. 
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In Eq. III.E.8 the last term is positive while experimentally, 

 ̂< 0; consequently, f® . On the other hand, while the last 
3 CH CH 

term in Eq. III.E.9 for the CH stretch contributes a small negative 

quantity to the first term dominates. Thus, the net result is 

A  ̂̂ Â CHjD) because the right hand side of Eq. III.E.9 is 

multiplied by a small term fJî 2.2 ~ f̂ Qls' agrees with the 

experimental observation shown in Table III.A.it. 

Similar analysis for the CN stretching frequency in the matrix yields, 

^ CB = - ĉC + " Mn' 

and in the gas phase. 

Thus for to isotopic substitution, 

Ai(N'\N") = - fini,) -

- (m.E.iÉ) 

The change of the curvature of the potential function at the minimum 

in the matrix relative to the gas cannot be determined accurately because 

the small solvent shifts are within experimental error. This is consonant 

with Eq. III.E.12 which predicts a small effect because of the heavier 

masses involved. 

The eigenvalue for the bending mode of HCN in the model is given by 

Eq. VI.D.IT: 
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X'" = f, A - f B̂ /A - f Ĉ /A (III.E.13) 
0  V  1  2 

while for the gas phase Eq. VI.D.21 gives. 

where 

A = (III.E.15) 

B = * :/rcH)/rc; " Mgd/r,, + (IH-E.IÊ) 

 ̂  ̂ " i/ft'/fca (III.E.X7) 

m a 
In these expressions, f̂  and f̂  are the matrix and gas phase bending force 

constants for HON, f̂  and f̂  are bending force constants for the M-H-C and 

C-N-M angles, (See Fig. III.E.lc), r̂ , r̂  are the internuclear distances 

for the matrix-hydrogen and nitrogen-matrix distances are r̂ ,̂ r̂  ̂are the 

gas phase CH and CN equilibrium bond lengths. 

For H-D isotopic substitution: 

A '(H-D) = (f; - f| )[iX̂  - figl/rgx (III.E.18) 

where the second and third terms are negligible compared to the first 

term in Eq. III.E.13. 

12 13 
Similarly for C to C isotopic substitution, 

l4 ] 5 
and for N to N ̂  isotopic substitution. 

X = ff A (III.E.Ik) 
e ° 
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A'(N̂ \ir̂ ') '(4 -t; (III.K.20) 

Consideration of the differences in the isotopic masses in Eqs. 

III.E.10, III.E.19, and III.E.20 predicts, 

andÂ (/̂ , K̂ )̂<< Â (H,D) 

as found in Table III.A.4. Since the terms involving mass and geometry 

in Eq. III.E.20 are positive and Ag(H,D) ̂  0 then fg  ̂f® . 

Summarizing the above results,A Î» the difference between the matrix 

and gas phase isotopic frequencies can be explained by a change in 

curvature of the potential function at the minimum. The size of the effect 

on the isotopic frequencies is governed by the magnitude of the masses 

involved. Hence, the large isotopic mass differences for H-D substitution 

magnifies the isotopic discrepancies while small isotopic mass differences 

tend to cause small isotopic discrepancies. 

The implications of this result in matrix isolation structure 

determination is as follows: The spherical cell model has shown that a 

rare gas matrix causes a negligible effect on geometry while in this 

section it is shown that the matrix isotopic discrepancies are created 

by a combination of mass and potential curvature effects. Thus, whenever 

a pair of isotopic frequencies are used to determine molecular geometry, 

A.'» the isotopic discrepancy must be less than experimental error. If 

not, the matrix isotopic discrepancies will be falsely attributed to a 

change in geometry. This criterion will not likely be met for light 

isotopes since frequency accuracy of the order of 0.1 cm ̂  is required for 

reliable geometries in the matrix. 



www.manaraa.com

88 

f| 

—'X 

f z  

Y M 

(a )  

fi f 
m 
CH 

m 
CN 

M 

(b)  

u  

M 

M 

( c )  

Fig. III.E.l. Matrix models : (a) diatomic model, (b) stretching 
modes for the triatomic matrix model, (c) "bending 
modes for the triatomic matrix model 
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F. Matrix Frequency Shifts in the HCN Spectrum 

In this section a simple empirical model for isolating the relative 

contributions of geometry changes, force constant changes and anharmonic 

changes to the curve is constructed. If the valence coordinates are 

essentially normal coordinates, comparison of potential curves for a 

molecule in the gas phase and a solvent shows the following possible 

changes which are schematically depicted in Fig. III.F.l for a diatomic 

molecule. 

First, the solvent can cause a change in the "bond length, so that the 

potential curve for the "bond in the solvent is shifted along the abscissa 

(Fig. III.F.lb). 

Second, a change in curvature of the potential function for the bond 

at the equilibrium configuration can occur, that is the bond force constant 

can change (Fig. III.F.lc). 

Third, anharmonicities for the bond in the solvent environment can 

change without a change in the bond force constant. This effect causes a 

decrease in the spacing between successive energy levels if the 

anharmonicity increases. 

In reality all the effects exist simultaneously, however, in some cases 

the magnitude of the effects can be determined to reveal their relative 

importance. An examination of the three effects for HCN has shown that 

the geometry and anharmonicity changes are insignificant but that changes 

in curvature, although small, are important. 

The relative importance of the three possible changes on matrix shifts 

can be considered by writing equations for matrix shifts derived in 
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Appendix D. Consider Eq. VI.D.15 for the CH matrix shift, 

Kh - Kn - '4 - 4'<Mh - Mo' ^ 'C -

- (III.P.I) 

and Eq. VI.D.16 for the CN matrix shift, 

ĉn • * "rr " ''rr'Fc 

- * '̂ n' • (lII-f-2) 

Since 

X. = h-rrĉ uym = kcô  
1 1 a ]_ 

and 

= 1̂ /(1 - Of̂ ) 

Eqs. III.P.I and III.F.2 can be written: 

-  ^ h "Mh  ^ M:) + (C -

and 

f'4 - - Mh> ^ (C - ^ 

These equations show that the matrix shifts depend both on 

anharmonicities and changes in curvature of the potential function. In 
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this case a change in bond length has no effect on the matrix shift. 

Their relationship can be found by supposing the bonds in a polyatomic 

molecule act like diatomic molecules and that an unspecified parameter Y 

is responsible for the perturbation of the gas phase potential. 

Differentiation of the expression 

V = 6l)(i - CC) 

with respect to Y gives 

3cr/aY = [(1 - a)8co/9y - aW3Y]/co (111.F.5) 

Since 

w= (N̂ f/jLl )̂ ^̂ /27rc (III.F.6) 

substitution of Eq. III.F.6 into Eq. III.F.5 gives 

1/2 
3Qr/9Y= [(N̂ /jU,f) (1- a ) / k ' f T c ) d f /  Q Y  -  @Z//aY]/ (IH.F.T) 

unless the matrix shift is nearly zero, that is 9Z//8Y 0, the first 

term on the right hand side of Eq. III.F.7 is small compared to 9 %// 9Y 

hence: 

@a/@Y % - (i/j/)9î /ay (III.F.8) 

Therefore a matrix shift to a lower frequency is associated with increasing 

anharmonicity and matrix shifts to higher frequencies is associated with 

decreasing anharmonicity. 

-1 
Applying these considerations to the CH bond where CO % 3̂ 41 cm 
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f = 6.2, af/3Y % - 0.1, 9W9Y = - 6.0, Sq. III.F.T gives 

0Cr/9Y % 0.001, a very small increase in anharmonicity. Similarly 

for the CÏÏ "bond QCf/9Y 0. Hence, this simple treatment agrees with 

the experimental observation in the previous section that anharmonicity 

changes contribute very little to HON matrix shifts. 

The effect of mass on the matrix shift is very important because large 

masses make all the terms in Eqs. III.F.3 and III.F.U small and tend to 

produce small anharmonic contributions to the matrix shifts while the 

opposite is true for small masses. 

Another important consideration of Eq. III.F.3 and Eq. III.F.4 is the 

combined effect of the intermolecular force constants to produce shifts. 

m ff 
Shifts to higher frequencies are produced in environments where f f̂ , 

consequently, the small matrix shifts observed for the CN stretch may be 

primarily due to the f̂  term in Eq. III.F.6 if f™̂  % f̂ .̂ For the CH 

stretch it has already been shown that f™̂  < fgg giving an observed shift 

to lower frequency thus, (f® - f™ ) > f . 
CH CH 1 

The matrix shift for the bending mode is given by Eq. VI.D.22. 

where Eqs. VI.D.lS to VI.D.20 define A, B, and C. Substituting the 

anharmonicity into Eq. III.F.9 one obtains 

- Xj = (f| - (III.F.9) 

lu/m - a® )f- [ I/" /(I - ) f  

t(fi - )A - f B^/A - f C^/A]/K 
y Cf X 2 

(III.F.10) 
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2 
In Eq. III.F.10 the contribution due to f and f are small because B 

12 
2 

and C are very small. The A term may be reduced to give the following 

expression for the matrix shift: 

[(f̂  - (III.F.II) 

Previously, it was shown that anharmonicity changes for the bending 

m g 
mode were small and fg > f̂  ; therefore the shift to higher frequency in 

the bending mode is due to a combined effect of the increased curvature in 

the potential function which is amplified by the small mass of the 

hydrogen atom. This increased curvature is due to an interaction of the 

hydrogen with the neighboring argon atoms. 
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Fig, III.F.l. Possible matrix effects on the potential function: (a) gas phase 
potential as a function of bond length, (fc) dotted line shows the 
effect of a change in bond length, (c) dotted line shows the effect 
of a change in the force constant 
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VI. APPENDICES 

A. Solution of a Secular Determinant "by Perturbation Theory 

The expanded secular determinant is 

"ii-x 

H. 
21 

H 
ni 

H 
12 

-22 -x 

0 

th 

H 
In 

"nn-^ 

The first order approximation for the t eigenvalue is 

= 0 

K ' \t 
(VI.A.l) 

The second order approximation is found by replacing the exact secular 

determinant with 

II 
11 -X 

H 
21 

H 
ni 

H 
12 

2̂2 ~ \l 

H 
In 

= 0 

The X's which should appear in the second, third, etc., diagonal 

terms are replaced by the first order approximation for , that is, 

X = H . The second order approximation is justified provided H 
11 tt 

Ĥ .(t ̂  i) are large, and is appropriate in that the neglected off diagonal 
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terms can only affect the desired X indirectly. 

The approximate secular determinant is solved by multiplication of 

each î  ̂row by H /(H.. - H ) and a subsequent subtraction from the first 
ii 11 11 

row. In this manner the secular determinant is transformed to the 

following form: 

""ii - ̂  - livt/'-tt - - "il"»;; - -11' • • • 

(H - H ) = 0 
nn 11 

Consequently,X , approximated to the second order is 

= - "ii' 

or for any other X  ^ i *  

= "ft. - l/tt'-t't/c'tt - "ft.' 

The unnormalized eigenvector obtained through a solution of the 

approximate secular detenainant is 

\.t = '"tf'̂ .t. -

where L =1 and t t t'. 
t't' 

^ ̂ 

B. F, G, H = FG Elements for a Bent, Symmetric, Triatomic Molecule 

The molecular parameters for a bent, symmetric, triatomic molecule 

are shown in Fig. VI.B.l where ct is the equilibrium bond angle, and r is 

the equilibrium bond length. 

The matrices F, G, and H = FG are 3x3 matrices whose elements are 
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functions of the molecular parameters are given below: 

F = f + f 
11 r rr 

2̂2 ~ ""ê or 

F = f - f 
33 r rr 

= F = 2̂ ''̂ r f 
12 21 e rcf 

1̂3 = ̂ 31 = ̂ 23 = f32 = ° 

gil " + cos m + 

ggg = ŝ ly/r̂  + (2mx/r̂ )(l " cos oc) 

^3 " + My 

°12 '°2l" 

°13 = g31 = °23 ' g32 = ° 

"n ' v°ll " ̂2°ia 

"22 ̂  ̂ 22̂ 22 1̂2̂ 12 

"33 ^33^33 

"i;' 1̂1̂ .2 "*" 1̂2*̂ 22 

21 ~ ̂ 22̂ 12 1̂2*̂ 11 

"13 = "31 " "23 = h32 = ° 
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Fig. VI.B.l. The tent, symmetric triatomic model 
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In these equations and r = refer to the reciprocal of 

the masses of the atoms X and Y in atomic mass units and the equilibrium 

internuclear separation, in A, respectively. 

The assumptions used to construct the spherical model are: first, an 

HCN molecule is isolated in an argon environment with a face centered 

cubic symmetry; second, only the H and N ends of the HCN molecule interact 

with argon atoms; third, the Ar-H, Ar-N interactions are given by the usual 

Lennard-Jones 6-12 potential where the potential is averaged over the 

surface of sphere. 

Fig. VI.C.l shows the spherical model for an Ar-H or Ar-N interaction 

where R is the radius of the spherical cavity, a is the distance from the 

atom considered to the center of the cavity and r is the distance from the 

center of the atom in consideration to an Ar atom whose center lies on the 

surface of a sphere. 

Since the Ar atoms are assumed to be smeared over the surface of a 

sphere then the average potential is, 

C. The Spherical Cell Model for HCN in an Argon Matrix 

r  
(VI.C.l) 

V 

From the law of cosines. 

2  ?  1 / 2  
r = (R + a + 2aRC0S 6) (VI.C.2) 

which substituted into Eq. VI.C.l gives 
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(̂a,R) = 1/2 d(C0S5 ) [(P.̂  + a/ + 2aBC0Ŝ  9-̂ ]̂ (VI.C.3) 

letting X = COS 0, 

1 
(̂a,r) = 1/2 

V 

dX [(R̂  + â  + 2aRX)̂ /̂ ] (Vl.C.lt) 

and 

Y = + â  + 2aRX (VI.C.5) 

then 

dY = 2aRdX (VI.C.6) 

Substitute Eqs. VI.C5 and VI.C.6 into VI.C.U with the Lennard-Jones 

potential: 

<̂ (y) = l+6[(a"A)̂  ̂- (cT/Y)̂ ] (VI.C.7) 

one obtains, 

(̂a,R) = €/aE 

P/ »2 
(R+a) 2 < 2 ? 

dY[(cr /Yr - (a- /y)3] (vi.c.8) 
(R-a)2 

Integration gives the spherically averaged potential for an Ar-atom 

interaction, which for Ar-H is 

l//(a.R) = (e cr̂ 'aR)[l/2((Cr/(R + a))̂  - (Cr/(R - a)̂ ) 

- l/5((Cr/(R + a))10 - (Cr/(R _ a))̂ °] (VI.C.9) 

Since there are n̂  nearest neighbors at and n̂  next nearest 

neighbors at R̂  then the spherically averaged potential is 
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Fig. VI.C.l. The spherical cell model for an atom - argon interaction 
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W/'(a,R) = % n ̂ (a,R. ) (VI.C.lO) 
r i=l 1 1 

A similar expression exists for the Ar-N interaction, 

•̂(a,R) = Z £(a,R. ) (VI.C.ll) 
S i=i 1 

Thus, the total potential energy for HON in a spherical cavity is 

X(a,b,c,R) = 2 n [l̂ (a,Rj + ̂ (c,R.)] + (̂  +6 (VI.C.12) 
i  ̂  ̂ vH 

where 

"̂ oh = fch'fch - (vi.c.is) 

The r̂  ̂and r̂  ̂are the equilibrium CH and CN bond distances; a, b, c 

are the distances from the center of the cavity to the H, C, and N atoms 

and, andV̂ Q̂g. are the harmonic oscillator approximation for the 

potential energy of the CH and CN bonds. 

D. Derivation of the Vibrational Model for Molecules Trapped 
in Rare Gas Matrices 

1. Diatomic molecules 

Fig. VI.D.la shows the model for a heteronuclear diatomic molecule in 

rare gas matrix where M is a large mass contribution from the cavity wall, 

f̂ , f̂  are the intermolecular force constants for the molecule-cavity 

m 
interactions and f is the diatomic intramolecular force constant in the 

2 

matrix. 

Appendix E shows the F, G and FG for the vibrational modes. The 



www.manaraa.com

106 

eigenvalues for the vibrational modes are calculated by 

x 2 - "22 - ''l2''2l/'«ll - "22' - v23̂ "'33 " "22' 

where H. = (FG) . After substitution of the (FG) into Eq. VI.D.l: 
ij ij ij 

K  '  4 ' '  x̂̂ i2 " ''23̂  Y 

- '^12'^x ' fr> - ^ ^x' - ^>xl' 

^x ' ̂ ï' - '23 

- f^23'^^X * - ^3^"W^Ï " /i' -

- ^</^X ^ ^ ^23^' 

m 
Since f̂  and f̂  then neglecting the terms in the denominator 

of the right hand side of Eq. VI.D.2 gives: 

x 2 = - ̂ x'l2 - '̂ 23̂  ' ̂l̂ x/'f̂ x ' 

f̂ jâ /C/X̂  + M'y) +A+B+C+D (VI.D.3) 

where 

c = fgjiMj + M„>/f2 (VI.B.6) 

d = - v23'̂ ï'̂ ï * lyi-d-tl 
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The motion of the cavity enters into Eq. VI.D.3 through the terms A, 

B, C, and D which involves A term by term analysis of A, B, C, and D 

reveals that these terms are very small because they contain the square of 

small force constants and reciprocal mass terms. This means that the 

kinetic effect of the cavity is negligible. Dropping the small terms from 

Eq. VI.D.3 the eigenvalue for the stretching mode is approximately: 

Since the gas phase eigenvalue is 

Xg = (VI.D.9) 

then the matrix shift is 

x" - x| = (f® - ̂ )(4x -mï' '  ̂

+ (VI.D.IO) 

2. Triatomic molecule (bond stretching modes) 

Fig. VI.D.lb shows the model for a triatomic molecule in a cavity where 

M refers to a mass contribution from the cavity wall, f̂ , f̂  are 

m jQ 
intermolecular potential functions, and f̂ , f̂  are the intramolecular 

potential functions for the XYZ triatomic molecule. 

The F, G, and FG matrix elements are listed in Appendix F. Eigenvalues 

for the X-Y and Y-Z stretching frequencies are found in a manner similar to 

those for the diatomic system. The general expressions for the XY, YZ 

modes are given by Eq. VI.A.3 and the matrix elements are listed in 
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Appendix F. In the triatomic case it is also found that the kinetic 

effect of the cavity is negligible. Hence, the results are for the X-Y 

stretch 

^2 = * My) 

- My * Mz) - fjCMx + My" (VI.D.ll) 

and the Y-Z stretch: 

x;  = <(My ^ - My<3 * - Mz) 

- f"f3my/[f2(mj * mz> - + my)] (vi.d.12) 

The F, G, and FG for a linear XYZ molecule in the gas phase are listed 

in Appendix F. Utilizing Eq. VI.A.3 the eigenvalues are 

X| = ff(Mx ^ M,) -  i^My -  ̂ ^M^/tffCM, -  M,) 

-f®(mx'^my)i (v1.d.13) 

x® = ./!,)- f:,m, - m, - m,) 

- + fig)] (VI.D.llt) 

Thus the matrix shifts for the stretching of the X-Y bond is 

. m,) ̂ - ̂ 3)my 

- ^iMj/'Mx * My) (VI.D.15) 

where the small term on the right hand side of Eq. VI.D.8 and VI.D.9 are 
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are neglected. Likewise, the matrix shift for the stretching of the Y-Z 

"bond is 

- (VI.D.16) 

3. Triatomic molecules (bond bending modes) 

Fig. VI.D.lc shows the model for the three doubly degenerate bending 

modes of a triatomic molecule in a rare gas cavity where M refers to the 

mass contribution of the cavity, X, Y, Z are the atoms in the triatomic 

molecule, r̂ , r̂  are Van der Waals distances, r̂ , r̂  are the gas phase 

equilibrium bond lengths, 0 ̂9 0̂ ' are the coordinates for the bending 

modes, and, f̂ , f̂ , and f̂  are the bending force constants. 

The FG elements for the three bending modes are listed in Appendix F 

where H. = (FG). . 
i j ij 

Utilizing Eq. VI.A.3 to find the eigenvalue for the bending mode of the 

XYZ molecule one obtains: 

àg = f̂ a - f̂ b̂ /a - fgĉ /a (vi.d.17) 

where 

A = Mx/̂ 2 (VI.D.18) 

B = ̂ (̂1/r̂  + l/rg)/rg + ̂ (̂l/r̂  + (VI.D.19) 

C = Myd/rg + + l/r̂ )/r2 (VI.D.20) 

The eigenvalue for the gas phase bending mode is 
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f  
m 

f 

M M 

( a )  

f ,  f g  fÇ  f2  
X : Zwv/^M 

(b )  

tf, 

/ ®'\ /  ®2\ /  ®3v 

M — t—Y—1 

(0 

Fig. VI.D.l. Mîatrix models: (a) diatomic matrix model, 
(t) stretching modes for the triatomic matrix 
model, (c) tending modes for the triatomic matrix 
model 
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X| = A 

Thus the matrix shift for the bending mode is 

2 

(VI.D.21) 

Xf - Xg = (fg - fpA - f̂ B /A - fgC /A (VI.D.22) 

E. Matrix Elements for a Heteronuclear 
Diatomic in a Rare Gas Cavity 

The F, G, and H = FG matrix elements for a heteronuclear diatomic 

molecule in a rare gas cavity are: 

CVI 0 

F = CVI < ^23 

0 on 

^3 

G = 

- m x °  

"^x -^y 

-11 ' 

H 
12 ' ̂12'̂ x * 

*13 " ' ̂12̂ ï̂ 

®21 = * f̂ x' -

M 

2̂2 " ̂ 2̂ x̂ ̂  X 12 23' Y 
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«31 = - 4x̂ 23 

«32 = '•23'̂ x * - '•3'̂ : 

h33 = - Mm) - 23' Y 

F. F, G, and H = FG Matrix Elements for the Stretching and Bending 
of a Linear Triatomic Molecule in a Rare 

Gas Cavity and in the Gas Phase 

1. Stretching modes 

The matrix elements for the stretching modes in a rare gas cavity are: 

F = 

f 
1 

f 
12 

0 0 

ro
 

4 ^̂ 3 
0 

0 
m 

2̂3 < Su 

0 0 
Su S 

G = 

-r H 

-Mh 

-H-c °  

- H-c 



www.manaraa.com

113 

"12 = 'i/hr * 

"13 = -

H = 0 
Ik 

«21 =  ̂

«22 ̂  ̂ 2̂ x̂ * ~ ^12^y " ̂23̂ y 

«23 2̂3 ̂ ŷ "*" • ̂2̂ y 

«24 = - ̂ 23̂ z 

«31 " ~ ̂ 23̂ Ï 

b32 = fgsf/'x + a4,) -

«33 ~ ̂ 3̂ ŷ "*" ŷ̂ 23 ~ ̂ ẑ 3k 

«3I1 = ^3/^Z " ^M) - ^Z^3 

«kl = 0 

«42 " " y 

«43 = + /̂ z) - f̂ /̂ z 

«44 4̂̂ ŷ •*" ẑ̂  " ̂ 4̂ z 

The ?, G, and FG for a linear triatomic molecule in the gas phase are: 



www.manaraa.com

llU 

1̂2 

ii 

u>
 

"21 ° '23 

"22 "3 

"11 

1̂2 =  - M x  

"21 =  - M x  

2̂2 

"u = * ̂ ï' -

«12 " ̂23"̂ ï * ̂ z> -

-21 = ^23'Mx " - ^2^r 

"22 ° '3'^ * ̂ z' " ^23^1 

2, Bending modes 

The ̂  matrix elements for the bending modes in a rare gas cavity are: 

«11 = wi * 

- ̂ 2'̂ x'̂ '=̂ l * l/'2)/r2 

m̂ g = - t ^ l f X ^ l l / T ^  + l/pg + f̂ y(l/rg + l/tgl/rg] 

* ̂12tmx/''2 * + mz/̂ j 
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"13 ' ' * l/fk'/f;] 

" ̂13' '̂ ï̂ ''3 * •" 

"21 = 2̂i'M„/''I + 

- ̂ s'mx*̂ '''̂ ! * l/re)/?; * ''sŝ ŷ vs 

"22 " - '•l2''̂ X<̂ '"'l " ̂/''2)/''2 * myd/'-s + l/rg'/rg] 

^ * f\/4' 

- fgge myd/r^ + l/rgi/fg + a^(l/rg + l/r^jl/r^] 

* ̂ 23'̂ /''3 * 

"31 ' ''is'̂ M̂ '"! * 

3̂2 = - ̂ 13̂  " l/rgi/fg + hyd/rg + l/r̂ i/rg] 

+ ̂ 23̂ x̂/̂ 2 + ̂ ŷ /̂̂ 2 + 1/̂ 3)̂ ' " 

- fgt^lyfl/rg + l/r^)/?] + a^zfl/rg + l/rj^)/!-^] 

"33 " " ̂23^ ̂ ¥^^^"*2 •" l/r3)/r3 + 
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The H matrix element for the bending mode in the gas phase is 

12 15 
G. Measurement of the Band Center for of H C N 

The band center for has not been reported in the 

literature. The measurement of this band center is reported in this 

section. 

was prepared from 98% enriched The H C N was prepared from 9o% N enriched K C N by the method 

12 15 
given in Section III.A. The H C N gas was contained in a cell with a 20 

cm path length filled to a pressure of approximately one mm Hg. The 

-1 
spectral slit widths were approximately 0.15 cm . The spectra were 

12 lit 
calibrated against gas phase H C K spectra (3̂ ). 

The first two columns in Table VI.G.l shows the results of two 

calculations for the bands measured in the P and R branches. The average 

of the two calibrations was used in the following expression to find the 

band center: 

= [R(J-l) + P(j)]/2 

The band center for the bending vibration of = 711.02 + 0.03. 
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Table VI.G.I. Calibration of in the gas phase 

Run 1 Run 2 Average [R(J-l) + P(J)]/2 

R ( 5 )  728.25 728.23 728.2k 

R ( U )  725.37 725.3k 725.36 

R ( 3 )  722.54 722.5I+ 722.5k 

R ( 2 )  719.63 719.60 719.62 

R ( l )  716.80 716.77 716.78 

P ( 2 )  705.2k 705.31 705.2k 

P ( 3 )  702.Uo 702.39 702.ko 

P(k) 699.51 699.52 699.52 

P ( 5 )  696.66 696.71 696.69 

P(6) 693.75 693.76 693.76 
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H. Band Intensity Measurements for 1/ and 1/ of 

12 l4 13 lit  ̂
H O N  a n d  H  C  N  i n  a n  A r g o n  M a t r i x  

The HCW samples were prepared by the method given in Section III.A. 

13 
The KCN sample was stated by the manufacturer to contain 57̂  C . However, 

subsequent analysis by mass spectrometry showed the sample to contain 

13 
50% C . 

The spectra were all recorded under identical conditions except that 

a thicker matrix was used to record the r/ band. 
3 

After the spectra were transformed from a transmittance to an 

absorbance scale the bands were integrated with a planimeter. Table VI.H.l 

summarizes the results where the first four columns are the areas obtained 

in arbitrary units for two different runs. The last column contains the 

ratio A'/A which is the relative intensity of or 1/ for to 

12 lU 
H C N. The ratios A'/A agree within experimental error and show that the 

13 l4 
band intensities for both 1/ and 7/ for H C N are more intense than 

12 li. 
those for H C N. 
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